Advanced MRI reconstruction toolbox with accelerating on GPU
نویسندگان
چکیده
In this paper, we present a fast iterative magnetic resonance imaging (MRI) reconstruction algorithm taking advantage of the prevailing GPGPU programming paradigm. In clinical environment, MRI reconstruction is usually performed via fast Fourier transform (FFT). However, imaging artifacts (i.e. signal loss) resulting from susceptibility -induced magnetic field inhomogeneities degrade the quality of reconstructed images. These artifacts must be addressed using accurate modeling of the physics of the system coupled with iterative reconstruction. We have developed a reconstruction algorithm with improved image quality at the expense of computation time and hence an implementation on GPUs achieving significant speedup. In this work, we extend our previous work on GPU implementation by adding several new features. First, we enable Sensitivity Encoding for Fast MRI (SENSE) reconstruction (from data acquired using a multi-receiver co il array) which can reduce the acquisition t ime. Besides, we have implemented a GPU -based total variation regularization in our SENSE reconstruction framework. In this paper, we describe the different optimizations employed from levels of algorithm, program code structures, and specific architecture performance tuning, featuring both our MRI reconstruction algorithm and GPU hardware specifics. Results show that the current GPU implementation produces accurate image estimates while significantly accelerating the reconstruction.
منابع مشابه
Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملIntegration of TomoPy and the ASTRA toolbox for advanced processing and reconstruction of tomographic synchrotron data
The processing of tomographic synchrotron data requires advanced and efficient software to be able to produce accurate results in reasonable time. In this paper, the integration of two software toolboxes, TomoPy and the ASTRA toolbox, which, together, provide a powerful framework for processing tomographic data, is presented. The integration combines the advantages of both toolboxes, such as th...
متن کاملA distributed ASTRA toolbox
While iterative reconstruction algorithms for tomography have several advantages compared to standard backprojection methods, the adoption of such algorithms in large-scale imaging facilities is still limited, one of the key obstacles being their high computational load. Although GPU-enabled computing clusters are, in principle, powerful enough to carry out iterative reconstructions on large da...
متن کاملAccelerating Cardiac MRI Compressed Sensing Image Reconstruction using Graphics Processing Units
Accelerating Cardiac MRI Compressed Sensing Image Reconstruction using Graphics Processing Units by Majid Sabbagh Master of Science in Electrical and Computer Engineering Northeastern University, April 2016 Prof. Miriam Leeser, Advisor Prof. Mehdi H. Moghari, Co-Advisor Cardiac magnetic resonance imaging (MRI) has become a crucial part of monitoring patients with congenital heart diseases. An i...
متن کاملAccelerating high-order WENO schemes using two heterogeneous GPUs
A double-GPU code is developed to accelerate WENO schemes. The test problem is a compressible viscous flow. The convective terms are discretized using third- to ninth-order WENO schemes and the viscous terms are discretized by the standard fourth-order central scheme. The code written in CUDA programming language is developed by modifying a single-GPU code. The OpenMP library is used for parall...
متن کامل